If there is one prayer that you should pray/sing every day and every hour, it is the LORD's prayer (Our FATHER in Heaven prayer)
It is the most powerful prayer. A pure heart, a clean mind, and a clear conscience is necessary for it.
- Samuel Dominic Chukwuemeka

"To You, O LORD, I lift up my soul; In You, my GOD, I trust. Do not let me be put to shame; do not let my enemies exult over me. Surely none who wait for You will be put to shame; but those who are faithless without cause will be disgraced. Show me Your ways, O LORD; teach me Your paths. Guide me in Your truth and teach me, for You are the GOD of my salvation; all day long I wait for You. Remember, O LORD, Your compassion and loving devotion, for they are from age to age. Remember not the sins of my youth, nor my rebellious acts; remember me according to Your loving devotion, because of Your goodness, O LORD. Good and upright is the LORD; therefore He shows sinners the way. He guides the humble in what is right and teaches them His way. All the LORD's ways are loving and faithful to those who keep His covenant and His decrees. For the sake of Your name, O LORD, forgive my iniquity, for it is great. Who is the man who fears the LORD? He will instruct him in the path chosen for him in the way he should choose. His soul will dwell in prosperity, and his descendants will inherit the land. The LORD confides in those who fear Him, and reveals His covenant to them. My eyes are always on the LORD, for He will free my feet from the mesh. Turn to me and be gracious, for I am lonely and afflicted. The troubles of my heart increase; free me from my distress. Consider my affliction and trouble, and take away all my sins. Consider my enemies, for they are many, and they hate me with vicious hatred. Guard my soul and deliver me; let me not be put to shame, for I take refuge in You. May integrity and uprightness preserve me, because I wait for You. Redeem 'me', O GOD from all my distress." - Psalm 25

The Joy of a Teacher is the Success of his Students. - Samuel Dominic Chukwuemeka



Word Problems on Integration

Samdom For Peace Prerequisite Topics:
Factoring
Partial Fractions
Exponents and Logarithms
Trigonometry
Differential Calculus

For JAMB Students
Calculators are not allowed. So, the questions are solved in a way that does not require a calculator.

For NSC Students
For the Questions:
Any space included in a number indicates a comma used to separate digits...separating multiples of three digits from behind.
Any comma included in a number indicates a decimal point.
For the Solutions:
Decimals are used appropriately rather than commas
Commas are used to separate digits appropriately.

Solve all questions
Indicate the method(s) you used as applicable
Show all work
Simplify your answer(s)

(1.) Evaluate $\displaystyle\int -7dx$


Power Rule

$ \displaystyle\int -7dx \\[5ex] = \displaystyle\int -7 * 1 * dx \\[5ex] 1 = x^0 ...Law\:\:3...Exp \\[3ex] = \displaystyle\int -7x^0dx \\[5ex] = -7 \displaystyle\int x^0dx \\[5ex] = -7 * \dfrac{x^{0 + 1}}{0 + 1} + C \\[5ex] = -7 * \dfrac{x^1}{1} + C \\[5ex] = -7x + C $
(2.) Determine the antiderivative of $\cot x$


Integration by Algebraic Substitution

$ \displaystyle\int \cot xdx \\[5ex] \cot x = \dfrac{\cos x}{\sin x}...Quotient\:\:Identity \\[5ex] Let\:\: p = \sin x \\[3ex] \dfrac{dp}{dx} = \cos x \\[5ex] \dfrac{dx}{dp} = \dfrac{1}{\cos x} \\[5ex] dx = \dfrac{dp}{\cos x} \\[5ex] \rightarrow \\[3ex] \displaystyle\int \cot xdx = \displaystyle\int \dfrac{\cos x}{\sin x} dx \\[5ex] = \displaystyle\int \dfrac{\cos x}{p} * \dfrac{dp}{\cos x} \\[5ex] = \displaystyle\int \dfrac{dp}{p} \\[5ex] = \ln p + C \\[3ex] = \ln \sin x + C $
(3.) JAMB Evaluate $\displaystyle\int_1^3 (x^2 - 1)dx$

$ A.\:\: -6\dfrac{2}{3} \\[5ex] B.\:\: 6\dfrac{2}{3} \\[5ex] C.\:\: \dfrac{2}{3} \\[5ex] D.\:\: -\dfrac{2}{3} \\[5ex] $

Power Rule

$ \displaystyle\int_1^3 (x^2 - 1)dx \\[5ex] \displaystyle (x^2 - 1)dx = \displaystyle\int x^2dx - \displaystyle\int 1dx \\[5ex] 1 = x^0 ...Law\:\:3...Exp \\[3ex] = \dfrac{x^{2 + 1}}{2 + 1} - \displaystyle\int x^0dx \\[5ex] = \dfrac{x^3}{3} - \dfrac{x^{0 + 1}}{0 + 1} + C \\[5ex] = \dfrac{x^3}{3} - x + C \\[5ex] \rightarrow \\[3ex] \displaystyle\int_1^3 (x^2 - 1)dx = \left[\dfrac{x^3}{3} - x\right]_1^3 \\[5ex] = \left(\dfrac{3^3}{3} - 3\right) - \left(\dfrac{1^3}{3} - 1\right) \\[5ex] = (9 - 3) - \left(\dfrac{1}{3} - \dfrac{3}{3}\right) \\[5ex] = 6 - \left(-\dfrac{2}{3}\right) \\[5ex] = 6 + \dfrac{2}{3} \\[5ex] = 6\dfrac{2}{3} $
(4.) JAMB Evaluate $\displaystyle\int \sin 3xdx$

$ A.\:\: -\dfrac{1}{3}\cos 3x + c \\[5ex] B.\:\: \dfrac{1}{3}\cos 3x + c \\[5ex] C.\:\: \dfrac{2}{3}\cos 3x + c \\[5ex] C.\:\: -\dfrac{2}{3}\cos 3x + c \\[5ex] $

Integration by Algebraic Substitution

$ \displaystyle\int \sin 3xdx \\[5ex] Let\:\: p = 3x \\[3ex] \dfrac{dp}{dx} = 3 \\[5ex] \dfrac{dx}{dp} = \dfrac{1}{3} \\[5ex] dx = \dfrac{dp}{3} \\[5ex] \rightarrow \\[3ex] \displaystyle\int \sin 3xdx = \displaystyle\int \sin p * \dfrac{dp}{3} \\[5ex] = \dfrac{1}{3} * \displaystyle\int \sin pdp \\[5ex] = \dfrac{1}{3} * -\cos p + C \\[5ex] = \dfrac{1}{3} * - \cos 3x + C \\[3ex] = -\dfrac{1}{3}\cos 3x + c $
(5.) WASSCE:FM

(a) Express $\dfrac{x + 6}{(x + 1)^3}$ in partial fractions

(b) Use the answer in (a) to evaluate $\displaystyle\int_1^2 \dfrac{x + 6}{(x + 1)^3}dx$


$ (a.) \\[3ex] \dfrac{x + 6}{(x + 1)^3} \\[5ex] $ Numerator: cannot be simplified further
Denominator: cannot be simplified further
Form: Proper Fraction: Repeated Linear Factors at the Denominator

$ \dfrac{x + 6}{(x + 1)^3} \\[5ex] = \dfrac{A}{x + 1} + \dfrac{B}{(x + 1)^2} + \dfrac{C}{(x + 1)^3} \\[5ex] = \dfrac{A(x + 1)^2 + B(x + 1) + C}{(x + 1)^3} \\[5ex] = \dfrac{A[(x + 1)(x + 1)] + Bx + B + C}{(x + 1)^3} \\[5ex] = \dfrac{A[x^2 + x + x + 1] + Bx + B + C}{(x + 1)^3} \\[5ex] = \dfrac{A[x^2 + 2x + 1] + Bx + B + C}{(x + 1)^3} \\[5ex] = \dfrac{Ax^2 + 2Ax + A + Bx + B + C}{(x + 1)^3} \\[5ex] = \dfrac{Ax^2 + 2Ax + Bx + A + B + C}{(x + 1)^3} \\[5ex] $ Denominators are the same
Equate the numerators

$ x + 6 = Ax^2 + 2Ax + Bx + A + B + C \\[3ex] Swap \\[3ex] Ax^2 + 2Ax + Bx + A + B + C = x + 6 \\[3ex] Ax^2 + x(2A + B) + A + B + C = 0x^2 + x + 6 \\[3ex] \implies \\[3ex] A = 0...eqn.(1) \\[3ex] 2A + B = 1...eqn.(2) \\[3ex] A + B + C = 6...eqn.(3) \\[3ex] Substitute\;\;eqn.(1)\;\;in\;\;eqn.(2) \\[3ex] 2(0) + B = 1 \\[3ex] 0 + B = 1 \\[3ex] B = 1 - 0 \\[3ex] B = 1 \\[3ex] Substitute\;\;0\;\;for\;\;A\;\;and\;\;1\;\;for\;\;B\;\;in\;\;eqn.(3) \\[3ex] 0 + 1 + C = 6 \\[3ex] 1 + C = 6 \\[3ex] C = 6 - 1 \\[3ex] C = 5 \\[3ex] \implies \\[3ex] \dfrac{x + 6}{(x + 1)^3} = \dfrac{0}{x + 1} + \dfrac{1}{(x + 1)^2} + \dfrac{5}{(x + 1)^3} \\[5ex] \dfrac{x + 6}{(x + 1)^3} = 0 + \dfrac{1}{(x + 1)^2} + \dfrac{5}{(x + 1)^3} \\[5ex] \therefore \dfrac{x + 6}{(x + 1)^3} = \dfrac{1}{(x + 1)^2} + \dfrac{5}{(x + 1)^3} \\[5ex] \underline{Check} \\[3ex] \dfrac{x + 6}{(x + 1)^3} = \dfrac{1}{(x + 1)^2} + \dfrac{5}{(x + 1)^3} \\[5ex] \underline{RHS} \\[3ex] \dfrac{1}{(x + 1)^2} + \dfrac{5}{(x + 1)^3} \\[5ex] = \dfrac{1(x + 1) + 5}{(x + 1)^3} \\[5ex] = \dfrac{x + 1 + 5}{(x + 1)^3} \\[5ex] = \dfrac{x + 6}{(x + 1)^3} \\[5ex] = LHS \\[3ex] $ Integration by Partial Fractions

$ (b.) \\[3ex] \displaystyle\int_1^2 \dfrac{x + 6}{(x + 1)^3} dx \\[5ex] = \displaystyle\int_1^2 \left[\dfrac{1}{(x + 1)^2} + \dfrac{5}{(x + 1)^3}\right] dx \\[5ex] = \displaystyle\int_1^2 \dfrac{1}{(x + 1)^2} dx + \displaystyle\int_1^2 \dfrac{5}{(x + 1)^3} dx \\[5ex] Let\;\; p = x + 1 \\[3ex] \dfrac{dp}{dx} = 1 \\[5ex] \dfrac{dx}{dp} = \dfrac{1}{1} = 1 \\[5ex] dx = dp \\[3ex] \displaystyle\int \dfrac{1}{(x + 1)^2} dx \\[5ex] = \displaystyle\int \dfrac{1}{p^2} dp \\[5ex] = \displaystyle\int p^{-2} dp \\[5ex] = \dfrac{p^{-2 + 1}}{-2 + 1} \\[5ex] = \dfrac{p^{-1}}{-1} \\[5ex] = -p^{-1} \\[3ex] = -\dfrac{1}{p} \\[5ex] = -\dfrac{1}{x + 1} \\[5ex] \implies \\[3ex] \displaystyle\int_1^2 \dfrac{1}{(x + 1)^2} dx \\[5ex] = \left[-\dfrac{1}{x + 1}\right]_1^2 \\[5ex] = -\dfrac{1}{2 + 1} - -\dfrac{1}{1 + 1} \\[5ex] = -\dfrac{1}{3} + \dfrac{1}{2} \\[5ex] = \dfrac{-2 + 3}{6} \\[5ex] = \dfrac{1}{6} \\[7ex] \displaystyle\int \dfrac{5}{(x + 1)^3} dx \\[5ex] = 5\displaystyle\int \dfrac{1}{(x + 1)^3} dx \\[5ex] = 5\displaystyle\int \dfrac{1}{p^3} dp \\[5ex] = 5\displaystyle\int p^{-3} dp \\[5ex] = 5 * \dfrac{p^{-3 + 1}}{-3 + 1} \\[5ex] = 5 * \dfrac{p^{-2}}{-2} \\[5ex] = -\dfrac{5}{2} * p^{-2} \\[5ex] = -\dfrac{5}{2} * \dfrac{1}{p^2} \\[5ex] = -\dfrac{5}{2p^2} \\[5ex] = -\dfrac{5}{2(x + 1)^2} \\[5ex] \implies \\[3ex] \displaystyle\int_1^2 \dfrac{5}{(x + 1)^3} dx \\[5ex] = \left[-\dfrac{5}{2(x + 1)^2}\right]_1^2 \\[5ex] = -\dfrac{5}{2(2 + 1)^2} - -\dfrac{5}{2(1 + 1)^2} \\[5ex] = -\dfrac{5}{2(3)^2} + \dfrac{5}{2(2)^2} \\[5ex] = -\dfrac{5}{2(9)} + \dfrac{5}{2(4)} \\[5ex] = -\dfrac{5}{18} + \dfrac{5}{8} \\[5ex] = \dfrac{-20 + 45}{72} \\[5ex] = \dfrac{25}{72} \\[7ex] \implies \\[3ex] \displaystyle\int_1^2 \dfrac{1}{(x + 1)^2} dx + \displaystyle\int_1^2 \dfrac{5}{(x + 1)^3} dx \\[5ex] = \dfrac{1}{6} + \dfrac{25}{72} \\[5ex] = \dfrac{12 + 25}{72} \\[5ex] = \dfrac{37}{72} \\[5ex] \therefore \displaystyle\int_1^2 \dfrac{x + 6}{(x + 1)^3} dx = \dfrac{37}{72} $
(6.) KCSE A particle was moving along a straight line.
The acceleration of the particle after t seconds was given by $(4t - 13)\;ms^{-2}$.
The initial velocity of the particle was 18 $ms^{-1}$
(a) Determine the value of t when the particle is momentarily at rest.
(b) Find the distance covered by the particle between the time t = 1 second and t = 3 seconds.


$ a = 4t - 13 \\[3ex] a = \dfrac{dv}{dt} \\[5ex] dv = a dt \\[3ex] v = \displaystyle\int a dt \\[3ex] v = \displaystyle\int (4t - 13) dt \\[3ex] v = \dfrac{4t^2}{2} - 13t + C \\[3ex] v = 2t^2 - 13t + C \\[3ex] when\;\;t = 0,\;\;initial\;\;velocity = v = 18\;ms^{-1} \\[3ex] \implies \\[3ex] 18 = 2(0)^2 - 13(0) + C \\[3ex] 18 = 0 - 0 + C \\[3ex] 18 = C \\[3ex] C = 18 \\[3ex] v = 2t^2 - 13t + 18 \\[3ex] (a) \\[3ex] momentarily\;\;at\;\;rest\implies v = 0 \\[3ex] 0 = 2t^2 - 13t + 18 \\[3ex] 2t^2 - 13t + 18 = 0 \\[3ex] 2t(t - 2) - 9(t - 2) = 0 \\[3ex] (t - 2)(2t - 9) = 0 \\[3ex] t - 2 = 0 \;\;\;OR\;\;\; 2t - 9 = 0 \\[3ex] t = 2 \;\;\;OR\;\;\; 2t = 9 \\[3ex] t = 2\;s \;\;\;OR\;\;\; t = \dfrac{9}{2}\;s \\[3ex] (b) \\[3ex] v = \dfrac{dd}{dt} \\[5ex] dd = vdt \\[3ex] d = \displaystyle\int v dt \\[3ex] $ The zeros of the function...where the graph include areas above or below the x-axis (t-axis) are t = 2 seconds and t = $\dfrac{9}{2} = 4.5$ seconds
But we are asked to calculate the area (distance covered) between t = 1 second and t = 3 seconds
So, we have to first calculate the area between t = 1 second and t = 2 seconds
Then, we calculate the area between t = 2 seconds and t = 3 seconds
Because 4.5 seconds is greater than 3 seconds, we skip that area.

$ v = \displaystyle\int_1^2 (2t^2 - 13t + 18) dt + \displaystyle\int_2^3 (2t^2 - 13t + 18) dt \\[5ex] v = \left[\dfrac{2t^3}{3} - \dfrac{13t^2}{2} + 18t\right]_1^2 + \left[\dfrac{2t^3}{3} - \dfrac{13t^2}{2} + 18t\right]_2^3 \\[5ex] \left[\dfrac{2t^3}{3} - \dfrac{13t^2}{2} + 18t\right]_1^2 \\[5ex] t = 2\;s \\[3ex] \dfrac{2(2)^3}{3} - \dfrac{13(2)^2}{2} + 18(2) \\[5ex] \dfrac{16}{3} - \dfrac{26}{1} + \dfrac{36}{1} \\[5ex] \dfrac{16 - 78 + 108}{3} \\[5ex] \dfrac{46}{3}\;m \\[5ex] t = 1\;s \\[3ex] \dfrac{2(1)^3}{3} - \dfrac{13(1)^2}{2} + 18(1) \\[5ex] \dfrac{2}{3} - \dfrac{13}{2} + \dfrac{18}{1} \\[5ex] \dfrac{4 - 39 + 108}{6} \\[5ex] \dfrac{73}{6}\;m \\[5ex] Area = \dfrac{46}{3} - \dfrac{73}{6} = \dfrac{92 - 73}{6} = \dfrac{19}{6}\;m \\[5ex] \left[\dfrac{2t^3}{3} - \dfrac{13t^2}{2} + 18t\right]_2^3 \\[5ex] t = 3\;s \\[3ex] \dfrac{2(3)^3}{3} - \dfrac{13(3)^2}{2} + 18(3) \\[5ex] \dfrac{18}{1} - \dfrac{117}{2} + \dfrac{54}{1} \\[5ex] \dfrac{36 - 117 + 108}{2} \\[5ex] \dfrac{27}{2}\;m \\[5ex] t = 2\;s \\[3ex] \dfrac{46}{3}\;m \\[5ex] Area = \dfrac{27}{2} - \dfrac{46}{3} = \dfrac{81 - 92}{6} = -\dfrac{11}{6} \\[5ex] Because\;\;Area\;\;cannot\;\;be\;\;negative; \;\;Area = \dfrac{11}{6}\;m \\[5ex] Total\;\;Area = Distance\;\;covered \\[3ex] = \dfrac{19}{6} + \dfrac{11}{6} \\[5ex] = \dfrac{30}{6} \\[5ex] = 5\;m $
(7.) WASSCE:FM Evaluate $\displaystyle\int_0^1 \dfrac{3 - 3x^2}{x + 1}dx$

$ A.\:\: 1\dfrac{1}{3} \\[5ex] B.\:\: 1\dfrac{1}{2} \\[5ex] C.\:\: 3 \\[3ex] D.\:\: 4\dfrac{1}{2} $


Power Rule

$ \displaystyle\int_0^1 \dfrac{3 - 3x^2}{x + 1}dx \\[5ex] 3 - 3x^2 = 3(1 - x^2) \\[3ex] 1 - x^2 = 1^2 - x^2 = (1 + x)(1 - x)...Difference\:\:of\:\:Two\:\:Squares \\[3ex] 3 - 3x^2 = 3(1 + x)(1 - x) = 3(x + 1)(1 - x) \\[3ex] \rightarrow \\[3ex] \dfrac{3 - 3x^2}{x + 1} = \dfrac{3(x + 1)(1 - x)}{x + 1} = 3(1 - x) = 3 - 3x \\[5ex] \rightarrow \\[3ex] \displaystyle\int (3 - 3x)dx = \displaystyle\int 3dx - \displaystyle\int 3xdx \\[5ex] \displaystyle\int 3dx = 3x \\[5ex] \displaystyle\int 3xdx = 3 * \dfrac{x^{1 + 1}}{1 + 1} = \dfrac{3x^2}{2} \\[5ex] \rightarrow \\[3ex] \displaystyle\int_0^1 \dfrac{3 - 3x^2}{x + 1}dx = \left[3x - \dfrac{3x^2}{2}\right]_0^1 \\[5ex] = \left[3(1) - \dfrac{3(1)^2}{2}\right] - \left[3(0) - \dfrac{3(0)^2}{2}\right] \\[5ex] = \left[3 - \dfrac{3(1)}{2}\right] - \left[0 - \dfrac{3(0)}{2}\right] \\[5ex] = \left(3 - \dfrac{3}{2}\right) - \left(0 - \dfrac{0}{2}\right) \\[5ex] = \left(\dfrac{6}{2} - \dfrac{3}{2}\right) - (0 - 0) \\[5ex] = \dfrac{6 - 3}{2} - 0 \\[5ex] = \dfrac{3}{2} \\[5ex] = 1\dfrac{1}{2} $
(8.) Evaluate $\displaystyle\int (3^p + 7^p)dp$


Standard Integral

$ \displaystyle\int a^x dx = \dfrac{a^x}{\ln a} + C \\[5ex] \displaystyle\int (3^p + 7^p)dp = \displaystyle\int 3^pdp + \displaystyle\int 7^pdp \\[5ex] \displaystyle\int 3^p dx = \dfrac{3^p}{\ln 3} \\[5ex] \displaystyle\int 7^p dx = \dfrac{7^p}{\ln 7} \\[5ex] \rightarrow \\[3ex] \displaystyle\int (3^p + 7^p)dp = \dfrac{3^p}{\ln 3} + \dfrac{7^p}{\ln 7} + C $
(9.) Evaluate $\displaystyle\int \sqrt{2 + \sqrt{x}} dx$


Integration by Algebraic Substitution

$ \displaystyle\int \sqrt{2 + \sqrt{x}} dx \\[3ex] Let\:\: p = 2 + \sqrt{x} \\[3ex] \dfrac{dp}{dx} = \dfrac{1}{2\sqrt{x}} \\[5ex] \dfrac{dx}{dp} = 2\sqrt{x} \\[5ex] dx = 2\sqrt{x}dp \\[3ex] \rightarrow \\[3ex] \displaystyle\int \sqrt{2 + \sqrt{x}} dx = \displaystyle\int \sqrt{p} * 2\sqrt{x} dp \\[3ex] = 2\displaystyle\int \sqrt{p} * \sqrt{x} dp \\[3ex] p = 2 + \sqrt{x} \rightarrow \sqrt{x} = p - 2 \\[3ex] = 2 * \displaystyle\int \sqrt{p}(p - 2) dp \\[3ex] \displaystyle\int \sqrt{p}(p - 2) dp = \displaystyle\int p\sqrt{p}dp - \displaystyle\int 2\sqrt{p}dp \\[3ex] \displaystyle\int p\sqrt{p}dp = \displaystyle\int p^1 * p^{\dfrac{1}{2}}dp = \displaystyle\int p^{1 + \dfrac{1}{2}}dp = \displaystyle\int p^{\dfrac{3}{2}}dp \\[5ex] \displaystyle\int p\sqrt{p}dp = \dfrac{p^{\dfrac{3}{2} + 1}}{\dfrac{3}{2} + 1} \\[7ex] \displaystyle\int p\sqrt{p}dp = p^{\dfrac{5}{2}} \div \dfrac{5}{2} \\[5ex] \displaystyle\int p\sqrt{p}dp = p^{\dfrac{5}{2}} * \dfrac{2}{5} \\[5ex] p^{\dfrac{5}{2}} = (\sqrt{p})^5 = (\sqrt{p})^4 * \sqrt{p} = \left(p^{\dfrac{1}{2}}\right)^4 * \sqrt{p} = p^2\sqrt{p} \\[5ex] \displaystyle\int p\sqrt{p}dp = \dfrac{2p^2}{5} \\[5ex] \displaystyle\int 2\sqrt{p}dp = 2\displaystyle\int \sqrt{p}dp \\[3ex] \displaystyle\int \sqrt{p}dp = \dfrac{p^{\dfrac{1}{2} + 1}}{\dfrac{1}{2} + 1} \\[7ex] \displaystyle\int \sqrt{p}dp = p^{\dfrac{3}{2}} \div \dfrac{3}{2} \\[5ex] \displaystyle\int \sqrt{p}dp = p^{\dfrac{3}{2}} * \dfrac{2}{3} \\[5ex] p^{\dfrac{3}{2}} = (\sqrt{p})^3 = (\sqrt{p})^2 * \sqrt{p} = \left(p^{\dfrac{1}{2}}\right)^2 * \sqrt{p} = p\sqrt{p} \\[5ex] \displaystyle\int 2\sqrt{p}dp = \dfrac{2p\sqrt{p}}{3} \\[5ex] \rightarrow \\[3ex] displaystyle\int \sqrt{p}(p - 2) dp = \dfrac{2p^2\sqrt{p}}{5} - \dfrac{2p\sqrt{p}}{3} \\[5ex] = 2p\sqrt{p}\left(\dfrac{p}{5} - \dfrac{1}{3}\right) \\[5ex] = 2p\sqrt{p}\left(\dfrac{3p}{15} - \dfrac{5}{15}\right) \\[5ex] = 2p\sqrt{p}\left(\dfrac{3p - 5}{15}\right) \\[5ex] \rightarrow \\[3ex] 2 * \displaystyle\int \sqrt{p}(p - 2) dp = 2 * 2p\sqrt{p}\left(\dfrac{3p - 5}{15}\right) \\[5ex] = 4p\sqrt{p}\left(\dfrac{3p - 5}{15}\right) \\[5ex] Substitute\:\:back \\[3ex] = 4(2 + \sqrt{x})\sqrt{2 + \sqrt{x}}\left(\dfrac{3(2 + \sqrt{x}) - 5}{15}\right) \\[5ex] \dfrac{3(2 + \sqrt{x}) - 5}{15} = \dfrac{6 + 3\sqrt{x} - 5}{15} = \dfrac{1 + 3\sqrt{x}}{15} \\[5ex] \rightarrow \\[3ex] displaystyle\int \sqrt{2 + \sqrt{x}} dx = 4(2 + \sqrt{x})\left(\sqrt{2 + \sqrt{x}}\right)\left(\dfrac{1 + 3\sqrt{x}}{15}\right) \\[5ex] \therefore \displaystyle\int \sqrt{2 + \sqrt{x}} dx = \dfrac{4}{15}(2 + \sqrt{x})(1 + 3\sqrt{x})\left(\sqrt{2 + \sqrt{x}}\right) + C $
(10.) Find the integral of $\tan x$


Integration by Algebraic Substitution

$ \displaystyle\int \tan xdx \\[5ex] \tan x = \dfrac{\sin x}{\cos x}...Quotient\:\:Identity \\[5ex] Let\:\: p = \cos x \\[3ex] \dfrac{dp}{dx} = -\sin x \\[5ex] \dfrac{dx}{dp} = -\dfrac{1}{\sin x} \\[5ex] dx = -\dfrac{dp}{\sin x} \\[5ex] \rightarrow \\[3ex] \displaystyle\int \tan xdx = \displaystyle\int \dfrac{\sin x}{\cos x} dx \\[5ex] = \displaystyle\int \dfrac{\sin x}{p} * -\dfrac{dp}{\sin x} \\[5ex] = \displaystyle\int -\dfrac{dp}{p} \\[5ex] = -\ln p + C \\[3ex] = -\ln \cos x + C $
(11.)


(12.) Evaluate $\displaystyle\int (v^{-2} + 8v^{-1})dv$


Power Rule

$ \displaystyle\int (v^{-2} + 8v^{-1})dv \\[5ex] = \displaystyle\int v^{-2}dv + \displaystyle\int 8v^{-1}dv \\[5ex] = \dfrac{v^{-2 + 1}}{-2 + 1} + 8 * \displaystyle\int v^{-1}dv \\[5ex] = \dfrac{v^{-1}}{-1} + 8 * \ln v + C \\[5ex] = -v^{-1} + 8\ln v + C \\[5ex] = -\dfrac{1}{v} + 8\ln v + C \\[5ex] = 8\ln v - \dfrac{1}{v} + C $
(13.)


(14.)


(15.)


(16.)